The Crystal Structure of $Nb_{16}W_{18}O_{94}$, a Member of a $(MeO)_xMeO_3$ Family of Compounds

ARTHUR W. SLEIGHT*

Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm, Sweden

The structure of a compound with the ideal formula $\mathrm{Nb_{16}W_{18}O_{94}}$ has been determined from single crystal X-ray data. The actual composition of the crystal used is believed to be $0.4\mathrm{NbO_{2.5}} \cdot 0.6\mathrm{WO_{3}}$. The space group is $P2_12_12$ with the unit-cell dimensions:

$$a = 12.251 \text{ Å}$$
 $b = 36.621 \text{ Å}$ $c = 3.94 \text{ Å}$

The structure is very similar to that of tetragonal potassium wolfram bronze, K_xWO_3 and belongs to a family of the general formula $(MeO)_xMeO_3$ where (MeO) has replaced the potassium in the pentagonal tunnels. Nonstoichiometry and results at other compositions in the $Nb_2O_5-WO_3$ and $Ta_2O_5-WO_3$ systems are discussed.

In a previous note ¹ it was pointed out that a better understanding of the structural relationships between certain Nb—W and Ta—W oxides and the tetragonal potassium wolfram bronze (TKWB)² had been obtained. A more detailed account of these relationships, including the structure of Nb₁₆W₁₈O₉₄, will be given here.

Banks and Noval³ first pointed out the existence of a composition in the Ta-W-O system (30 % Ta₂O₅ · 70 % WO₃) which gave an X-ray diffraction pattern very similar to TKWB. They were of the opinion that the phase actually existed over a range of compositions. The presence of this phase in the Ta₂O₅—WO₃ system has also been reported by Kovba and Trunov ⁴ who referred to it as having the formula Ta₂O₅ · 3WO₃.

The phase $\mathrm{Nb_2O_5} \cdot 3\mathrm{WO_3}$ was first reported by Goldschmidt.⁵ Kovba and Trunov ⁴ confirmed this, and Mohanty and Fiegel ^{6,7} demonstrated that the phase was structurally similar to TKWB. It was the opinion of Goldschmidt and of Mohanty and Fiegel that this phase also exists over a range of compositions.

A study of the Nb₂O₅—WO₃ and Ta₂O₅—WO₃ systems was undertaken to elucidate the structural principles involved. Since there are no alkali (or similar) cations present and since the oxygen-to-metal ratio is considerably

^{*} Present address: Central Research Department, E.I. du Pont de Nemours, Wilmington, Delaware, USA.

less than three, it was not apparent how these phases could be structurally related to TKWB. It was of further interest to determine if the phases were truly nonstoichiometric.

EXPERIMENTAL

Metal powders were used as starting materials. Niobium and tantalum were "Matthey Specpure" and wolfram was 99.9%. Two methods of preparation were used. In the first, intimate mixtures of the metals in correct proportions were oxidized in air at 500°C in alumina crucibles. Complete oxidation was confirmed by weight gain and sample appearance. The resulting mixture of oxides was pelleted and then sealed in a platinum tube with air (~l atm.) present. (Attempts to use evacuated tubes led to reduced products). The sealed platinum tubes were heated at temperatures from 1200° to 1400°C for one to three days. In general, the platinum tubes were heated in about one atmosphere of air, but in a few runs an external pressure of about 30 atm. of argon was used. The second preparative method was identical to the first except that the pure metals were oxidized and then intimately mixed in the correct proportions. No difference in the results for these two methods was detected.

The NbO_{2.5}—WO₃ and TaO_{2.5}—WO₃ systems were studied from 0.2NbO_{2.5} (TaO_{2.5}) · 0.8WO₃ up to 0.5NbO_{2.5} (TaO_{2.5}) · 0.5WO₃, since this is roughly the region of occurrence for phases structurally related to TKWB. Products were pale yellow to white, and needles were generally present. In a few cases the products were grey or black due to reduction of the sample. Such products were not considered to be true members of the Ta₂O₅—WO₃ or Nb₂O₅—WO₃ systems. X-Ray powder patterns were obtained for all products using a Guinier camera with strictly monochromatic CuK α_1 radiation and potassium chloride (a = 6.2919 Å at 20°) as an internal standard. True single crystals were rare at any composition. Needles between 0.3 and 0.4Nb or Ta were in fact always found to be polycrystalline, while needles between 0.4 and 0.5Nb or Ta were generally

incoherently twinned.

The crystal used for single crystal analysis was picked from a sample of the composition 0.4Nb which had been heated at 1400° C for one day. The crystal was a parallelepiped with a length of 0.078 mm and sides of 0.015 and 0.021 mm. Weissenberg photographs were taken around the needle axis (c axis) using $CuK\alpha$ radiation. All the layer lines thus obtainable were registered using multiple film techniques. Precession photographs were taken for 0kl and k0l data using $MoK\alpha$ radiation. The relative intensities of the reflections were visually estimated by comparison with an intensity scale prepared by registering accurately defined exposures with a suitable reflection from the crystal. The crystal was twinned but most of the reflections were resolved. The intensity ratio for equivalent reflections from the two individuals of the twin ranged from five to ten. The data were corrected for absorption using a program by Werner. Due to the twinning of the crystal these corrections were not very accurate; however, the shape of the crystals provides an absorption correction which is nearly constant for the reflections used.

The W³⁺ and Nb³⁺ scattering curves used were taken from Thomas and Umeda.⁹ The O⁻ scattering curve was taken from Hartree.¹⁰ Corrections for dispersion were made. Most of the calculations involved in the crystal structure determination were facilitated

by the use of the electronic computers BESK and FACIT.

DERIVATION OF THE STRUCTURE

The single crystal photographs showed orthorhombic symmetry. The cell constants are given in Table 1. The only systematic absences were h odd for h00 reflections and k odd for 0k0 reflections; thus, the space group was uniquely determined as $P2_12_12$. Since upper level photographs were very similar to the zero level, it is likely that all atoms lie very close to the (001) and (002) planes. However, the increasing differences between the various layer lines most likely indicates a puckering of the network. In view of this and the size

	a, A	b, Å	c , $ ilde{\mathbf{A}}$	$\mathbf{T}^{\circ}\mathbf{C}$
$0.20 \mathrm{Ta}$	11.97	•	3.84	1400
0.30 Ta	12.217		3.875	1200 1400
0.40Ta	12.223		3.880	1200 (or 1400 with
				$\sim 60 \text{ atm. } O_2$
0.40Ta	12.266	36.274	3.886	1370
0.50Ta	12.257	36.298	3.886	1200 - 1400
0.35 Nb	12.163		3.920	1200-1400
$0.40 \mathrm{Nb}$	12.172		3.928	1200 (or 1400 with
				\sim 60 atm. O_2
$0.40 \mathrm{Nb}$	12.251	36.621	3.943	1370
$0.50 \mathrm{Nb}$	12.248	36.610	3.950	1200 - 1400

Table 1. Cell dimensions with reaction temperatures.*

of the cell, the structure was solved in projection using hk0 data only. The close agreement of the intensity data with those given by crystals in the $TaO_{2.5}$ —WO₃ system indicated that there was no appreciable ordering among the niobium and wolfram atoms. Therefore, Nb and W were assumed to be randomly distributed at the metal sites. It was further obvious from the data that this structure could be viewed as a superstructure of TKWB.

The structure of TKWB (Fig. 1b) can be regarded as a complex network of WO₃ octahedra sharing corners. The resulting pentagonal tunnels and perovskite-like cages are partially filled with K atoms. Although the potassium content may vary, the ratio of oxygen to wolfram in the network remains at three. In the Nb₂O₅—WO₃ and Ta₂O₅—WO₃ systems the ratio of oxygen-tometal is less than three. The high density of the 0.4Nb composition, 5.95, indicated that, rather than oxygen deficiency, the tunnels were being filled in some manner.

Fig. 1. The crystal structure of (a) Nb₁₆W₁₈O₉₄ and (b) tetragonal potassium wolfram bronze according to Magnéli.²

^{*} Oxygen pressure was about one atmosphere except where otherwise indicated.

Table 2. Observed and calculated F-values. l = 0.

h	\boldsymbol{k}	$F_{ m obs}$.	$F_{ m calc}$	h	\boldsymbol{k}	$oldsymbol{F}_{ ext{obs}}$	$F_{ m calc}$
0	4	181	158	2	19	180	166
ŏ	6	121	142	$ar{f 2}$	20	174	147
0	8	114	98	$ar{f 2}$		291	261
0	10	362	397	2		122	103
0	12	354	299		24	402	366
0	14	133	133	2		143	147
	16	185	194	2	27	153	166
	20	177	169	2		204	192
	24	548	505	2		332	292
	26	107	90	2		477	450
	30	462	507	2	34	332	310
	32	298	291	${\begin{smallmatrix}2\\2\end{smallmatrix}}$	35	139	131
	36 40	128 152	116 154	$\frac{2}{2}$		372 300	356 308
0	42	389	447	$\overset{2}{2}$	40	300 322	328
0	44	147	146	$\overset{2}{2}$	43	221	241
ŏ	46	166	197	3	1	167	170
ĭ	2	130	132	3	$\dot{f 2}$	80	79
i	4	84	108	3	$\tilde{3}$	605	684
î	$\bar{6}$	$2\overline{39}$	238	3	4	140	161
ī	8	102	111	3	5	186	205
1	9	596	701*	3	6	631	721*
1	10	66	75	3	7	89	94
1	11	146	137	3	9	496	553
1	12	669	*008	3		114	82
1	13	129	123	3		118	90
1	17	184	189	3		303	274
1	18	95	101	3		561	708*
1	19	131	110	3		353	348
1	20	198	217		21	104	104
1	21	639	845*	3		294	286
1	$\frac{22}{24}$	258 238	$\begin{array}{c} 224 \\ 206 \end{array}$	3 3		$\begin{array}{c} 532 \\ 125 \end{array}$	524
l 1	2 4 25	238 134	200 127	3		125 149	$\begin{array}{c} 97 \\ 151 \end{array}$
i	29	123	138	3		166	155
i	30	291	284	3		151	151
i	31	364	364		34	194	197
î	36	221	214	3		154	154
ī	39	146	149	3		174	169
1	40	123	148	3		211	237
1	42	97	106	3	41	96	100
1	43	227	229	3		103	88
1	44	143	152	3		179	184
1	45	219	259	3		120	134
1	46	71	85	4	_	352	366
2	0	145	132	4		183	163
2	1	95	109	4		663	826*
2 2 2 2 2 2 2 2	3	248	262	4		70	67
2	4	$\begin{array}{c} 82 \\ 261 \end{array}$	89	4		85 597	86 571
9	6 7	201 181	$\begin{array}{c} 253 \\ 175 \end{array}$	4		527 89	571 101
9	8	180	220	4		95	86
2	9	575	634	4	_	107	103
2	11	167	192	4		60	62
$\tilde{2}$	12	464	543*	4		112	98
$ar{2}$	18	549	683*	4		îiî	117
_				-		·-	

Acta Chem. Scand. 20 (1966) No. 4

h	\boldsymbol{k}	$F_{ m obs}$	$F_{ m calc}$	h k	$F_{ m obs}$	$F_{ m calc}$
4	13	247	256	6 11	134	139
	15	250	264	6 13	116	117
4	16	169	178	6 14	210	219
4	19	130	137	6 15	348	329
	20	80	83	6 16	154	167
4	21	149	141	6 17	139	148
4	22	164	174	6 18	306	293
	24	140	147	6 24	330	338
	$\begin{array}{c} 25 \\ 26 \end{array}$	120	127	$\begin{array}{c} 6 & 27 \\ 6 & 28 \end{array}$	129	$\begin{array}{c} 129 \\ 277 \end{array}$
	20 27	196 667	186 67 3	6 28 6 30	$\begin{array}{c} 264 \\ 234 \end{array}$	277 238
	28	107	81	6 32	$\begin{array}{c} 234 \\ 172 \end{array}$	150
	29	128	131	6 33	300	303
	31	94	101	6 34	141	151
	36	227	215	6 35	126	137
4	37	133	118	6 36	477	462
	38	104	99	6 37	116	118
	39	204	227	6 39	154	140
	40	194	175	6 41	103	119
4	41	159	144	$\frac{6}{7}$	149	162
4	42	103	111	7 3	693	915*
4	43	$\begin{array}{c} 96 \\ 176 \end{array}$	90 187	$\begin{array}{ccc} 7 & 4 \\ 7 & 7 \end{array}$	$\begin{array}{c} 177 \\ 102 \end{array}$	182 111
5 5	2 3	73	60	7 8	184	196
5	6	69	54	7 9	125	134
5	7	63	65	7 10	234	256
5	9	274	267	7 12	109	104
5	11	113	117	7 13	206	211
5	12	301	300	7 15	439	360
5	15	781	1026*	7 21	4 60	452
5	16	211	213	7 22	214	192
5	17	177	173	7 23	118	107
5	18	373	349	7 24	280	254
5	20	120	138	7 25	109	117
5 5	$\begin{array}{c} 21 \\ 22 \end{array}$	374	$\begin{array}{c} 337 \\ 152 \end{array}$	7 27 7 28	138 138	148 128
5 5	$\frac{22}{24}$	154 172	181	7 29	108	88
5	$\frac{24}{25}$	230	223	7 33	269	242
5	26	116	111	7 35	204	197
5	27	392	375	7 36	148	120
5	30	326	309	7 37	106	116
5	31	295	263	7 39	178	171
5	34	196	194	8 0	489	493
5	36	155	138	8 3	202	211
5	37	322	318	8 4	176	168
5	39	249	263	$\begin{array}{ccc} 8 & 6 \\ 8 & 7 \end{array}$	477	431
5 5	$\begin{array}{c} 40 \\ 42 \end{array}$	103 133	$\begin{matrix} 97 \\ 132 \end{matrix}$	$\begin{array}{ccc} 8 & 7 \\ 8 & 8 \end{array}$	189 104	$\begin{array}{c} 176 \\ 103 \end{array}$
	43	133 79	90	8 9	562	536
5	45	36	27	8 11	187	169
6	ì	186	176	8 12	126	139
6	$\hat{3}$	75	77	8 15	200	204
6	4	117	135	8 16	123	116
6	5	59	55	8 18	316	296
6	7	131	112	8 19	204	192
6	8	128	138	8 21	335	317
6		621	721*	8 23	120	135
6	10	127	104	8 24	521	475

Acta Chem. Scand. 20 (1966) No. 4

h	\boldsymbol{k}	$F_{ m obs}$	$F_{ m calc}$	h k	$F_{ m obs}$	$F_{ m calc}$
8	25	240	237	11 21	233	210
	27	166	151	11 22	124	117
8	28	116	126	11 24	490	464
8	29	123	118	$\overline{11}$ $\overline{28}$	208	225
	30	152	166	11 30	337	324
		444	430	11 31	83	103
8	34	218	$\bf 225$	11 33	76	86
8	36	167	152	12 0	174	177
8	40	99	116	12 3	261	236
9	2 6	99	89	12 5	136	138
9	8	$\begin{array}{c} 110 \\ 121 \end{array}$	$103 \\ 122$	12 6	363	349
9	10	154	149	$\begin{array}{cc}12&7\\12&12\end{array}$	214	192
9	12	623	662	12 12 12 15	271	270
9	15	480	448	12 13 12 18	156 557	137 538
_	18	162	157	12 19	187	$\begin{array}{c} 338 \\ 172 \end{array}$
	19	120	108	12 13	195	160
9	20	84	114	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	110
9		163	152	$\overline{12}$ $\overline{25}$	118	115
	23	161	143	$\frac{12}{12} \frac{26}{26}$	189	176
	24	193	179	12 28	203	192
	25	248	227	13 3	149	139
	27	392	369	13 4	215	193
	30	195	177	13 5	133	129
	32	161	158	13 6	377	341
	33	123	119	13 9	336	323
10	39 0	$\begin{array}{c} 134 \\ 477 \end{array}$	162	13 10	192	166
10	1	196	$\begin{array}{c} 503 \\ 207 \end{array}$	13 12	305	301
10	3	422	382	13 14 13 15	207	197
10	4	143	159	13 18	$\begin{array}{c} 251 \\ 104 \end{array}$	245
10	6	388	344	13 16	290	$\begin{array}{c} 119 \\ 285 \end{array}$
10		368	330	14 0	496	630*
10	16	146	127	$14 \overset{\circ}{5}$	143	137
10		138	129	14 7	230	245
10		195	188	14 9	63	80
10		175	182	14 10	125	125
10		118	103	14 11	123	116
10		142	134	14 12	139	139
$\frac{10}{10}$		145	125	14 13	67	76
10		$\begin{array}{c} 110 \\ 263 \end{array}$	100	14 14	98	93
10		91	$\begin{array}{c} 269 \\ 100 \end{array}$	14 15	105	92
10		126	123	14 16 14 17	42	51
10		342	327	14 17	$\begin{array}{c} 92 \\ 130 \end{array}$	96
11	2	235	. 219	14 19	85	152 99
11	3	184	193	14 21	114	131
11	5	110	100	15 1	105	112
11	6	521	515	15 2	96	106
11	9	202	208	15 3	200	226
	11	97	98	15 4	89	110
	12	84	96	15 5	102	103
	13	223	197	15 9	192	232
11		288	269	15 10	68	78
11	10	379	343			

The metals present seemed too small to occupy the K positions. (The coordination of K is 15 in the pentagonal tunnels and 12 in the perovskite-like cages). However, by placing oxygens in K positions, more suitable sites for the metal atoms could be provided. Placing oxygen in the perovskite cages produces octahedra, but these are electrostatically unfavorable since they would share edges with four others. Placing oxygen in the pentagonal tunnels produces pentagonal bipyramids. These also share edges, but are more favorable because the metal-to-metal distances are greater.

The unit cell contains 12 pentagonal tunnels which are divided into 3 four-fold sites by symmetry. From the composition it was thought that only one of these sites was being used. (At 0.47Nb one fourfold site would be exactly filled). The site thought most probable is shown in Fig. 1a. Refinement of this model by the least squares and Fourier methods proved it to be correct.

As previously stated the Nb and W atoms were assumed to be statistically distributed at the metal sites. A difference map, after refinement of the parameters to an R value of 8.0 %, indicated that the distribution was not strictly statistical. Refinement of the Nb to W ratio at each site led to an R-factor of 6.9 %. A difference map then showed mainly satellite peaks of the metal atoms. The largest of these was less than 25 % of an oxygen. These peaks were thought to arise from at least three sources: disorder, anisotropic temperature factors for the metal atoms, and super-position errors due to the assumption that an oxygen in projection with a metal atom has the same x and y coordinates. Cruickshank's weighting scheme 11 was used in the final least squares refinement.

The observed and calculated structure factors are given in Table 2. The observed structure factors with asterisks were not used in the final least squares refinement. The R-factor including these reflections is 8.0 %. The final parameters are given in Table 3. The standard deviations for the metal positions amount to about 0.004 Å while those for oxygens 1-15 amount to about 0.05 Å. Oxygens 16-23 were assumed to have the same x and y coordinates as metal atoms 1-8. The standard deviations of a, the atom fraction of W on a site, are about 0.05. Correlations of about 0.60 were found between the temperature factor at a metal site and the atom fraction of W at that site. It should be noted that it was assumed that the Me_1 site was completely filled with a mixture of Nb and W. (Also 0.6 moles of O_2 per unit cell was left unaccounted for). However, if this pentagonal tunnel is not completely filled, as discussed in the next section, the value of a for Me_1 given in Table 3 would be low.

Some interatomic distances and angles are given in Table 4. The standard deviations average at 0.05 Å for the metal-oxygen distances and 0.07 Å for the oxygen-oxygen distances. The standard deviations for the angles average at 0.2°. It should be noted that the filled tunnel is much more regular and smaller than the empty tunnels.

NONSTOICHIOMETRY AND RESULTS AT OTHER COMPOSITIONS

Crystals examined from the compositions 0.4Ta (1400°C and \sim 1 atm. O₂), 0.5Nb and 0.5Ta showed the same superstructure as that of 0.4Nb (1400°C

Table 3. Final atomic parameters. Space group $P2_12_12$.

Atom	Position	\boldsymbol{x}	$\sigma(x)$	\boldsymbol{y}	$\sigma(y)$	z	β	$\sigma(oldsymbol{eta})$	u
Me_1	4 (c)	0.3321	0.0004	0.3898	0.0001	~1/2	0.37	0.11	0.16
Me_2	*	0.0744	0.0003	0.0700	0.0001	$\sim 1/2$	0.46	0.09	0.68
Me_{3}^{2}	*	0.0713	0.0003	0.4028	0.0001	$\sim 1/2$	0.01	0.09	0.65
Me_{\bullet}	*	0.4205	0.0004	0.2324	0.0001	$\sim 1/2$	0.22	0.10	0.59
Me_5	*	0.2935	0.0004	0.4785	0.0001	$\sim 1/2$	0.22	0.08	0.60
Me_{s}	*	0.2097	0.0003	0.3070	0.0001	$\sim 1/2$	0.14	0.09	0.53
Me_{τ}	*	0.2943	0.0004	0.1386	0.0001	$\sim 1/2$	0.37	0.09	0.54
Me_{s}	*	0.0153	0.0003	0.1731	0.0001	$\sim 1/2$	0.06	0.07	1.00
Me_{\bullet}	2(b)	1/2		0		$\sim 1/2$	0.48	0.12	0.75
O_1	4 (c)	0.342	0.005	0.001	0.002	$\sim 1/2$			
O ₂	»	0.120	0.005	0.023	0.002	$\sim 1/2$			
O_3	*	0.206	0.005	0.099	0.002	$\sim 1/2$			
O ₄	*	0.442	0.005	0.121	0.002	$\sim 1/2$			
O ₅	*	0.006	0.005	0.449	0.002	$\sim 1/2$			
O ₆	*	0.165	0.005	0.165	0.002	$\sim 1/2$			
ο,	*	0.004	0.005	0.222	0.002	$\sim 1/2$			
O _B	*	0.070	0.005	0.291	0.002	$\sim 1/2$			
Ο,	*	0.290	0.005	0.262	0.002	$\sim 1/2$			
O ₁₀	*	0.350	0.005	0.189	0.002	$\sim 1/2$			
On	*	0.355	0.005	$\begin{array}{c} 0.335 \\ 0.362 \end{array}$	0.002	$\sim 1/2$			
012	*	$0.176 \\ 0.217$	$0.005 \\ 0.005$	$\begin{array}{c} 0.362 \\ 0.072 \end{array}$	$\begin{array}{c} 0.002 \\ 0.002 \end{array}$	$\sim 1/2$			
Oıs	» »	$0.217 \\ 0.412$	0.005	$0.072 \\ 0.442$	$0.002 \\ 0.002$	$\overset{\sim 1/2}{\sim 1/2}$			
014	<i>"</i> »	$0.412 \\ 0.497$	0.005	0.342 0.381	$0.002 \\ 0.002$	$\sim 1/2$			
${\rm O^{15}_{16}}$	" *	0.437 0.332	0.003	0.390	0.002	~ 0			
O ₁₇	»	0.074		0.070		~0			
O_{18}^{17}	»	0.071		0.403		~0			
O_{19}^{18}	»	0.420		0.232		~0			
$\widetilde{\mathcal{O}}_{20}^{19}$	»	0.294		0.478		~°0			
O ₂₁	*	0.210		0.307		~°0			
$\widetilde{\mathbf{O}}_{22}^{21}$	*	0.294		0.139		~°0			
O_{23}^{23}	*	0.015		0.173		~0			
024	2(b)	1/2		0		~0			

and ~ 1 atm. O_2). All crystals exhibited a strong tendency to twin, but the tendency was definitely greater in the Ta system. The individuals of the twin had their c axes in common and were joined in such a way as to create the fourfold axis of the derivative structure (TKWB). The unit cell thus had the superficial appearance of being tetragonal with a=36 Å.

Compositions somewhat richer in W gave powder diffraction patterns also very similar to TKWB but with no superstructure as indicated in Table 1. It should be pointed out that the compositions 0.4Nb and 0.4Ta can exist with or without the superstructure depending on the conditions. The upper limit of WO₃ in these phases was about 0.65W in the niobium system but at least 0.8W in the tantalum system. The diffraction lines for 0.2Ta were, however, very broad.

The formula for all these TKWB-like phases could be written as $W_{30-3x}\text{Nb}_{4x}\text{O}_{90+x}$ (or $W_{30-3x}\text{Ta}_{4x}\text{O}_{90+x}$) assuming that the metal to oxygen ratio in the tunnels is always one. When x is four (or very close to four) an ordering of the filled tunnels occurs. For values of x less than four the

Table 4. Some interatomic distances and angles.

		0	
Me_1 - O_{11}	2.04 Å	$O_1 - O_2$	2.88
O ₁₂	2.10	$O_2 - O_3$	3.03
0,,	1.97	$O_3 - O_4$	2.92
O ₁₄	2.20	$O_4^3 - O_5^4$	$\frac{2.02}{2.74}$
O ₁₅	2.04	$\overset{\circ}{\mathrm{O}_{5}^{4}}-\overset{\circ}{\mathrm{O}_{1}^{5}}$	$\frac{2.74}{2.71}$
$Me_2 - \overset{\smile}{\mathrm{O}}_2^{15}$	1.92	$O_5 - O_1$	
O_3	1.94	$O_6 - O_7$	2.80
O_3		$O_7 - O_8$	2.69
O ₁₄	1.99	$O_8 - O_9$	2.80
O ₁₅	2.02	$O_9 - O_{10}$	2.74
Me_3-O_{12}	2.00	$O_{10}-O_6$	2.55
013	2.08	$O_{11} - O_{12}$	2.38
O ₅	1.88	$\mathbf{O_{12}}\mathbf{-O_{13}}$	2.48
$O_{\mathbf{A}}$	1.85	$O_{13} - O_{14}$	2.44
Me_4-O_{10}	1.75	$O_{14}^{16} - O_{15}^{14}$	2.46
O_8	2.09	$O_{15}^{14} - O_{11}^{15}$	2.43
O ₈ O ₉	1.94	- 15 - 11	
O_7^{\bullet}	1.99		
Me_5-O_{14}	2.00		
O ₁₃	2.02	Angles around pen	tagonal tunnels
$\tilde{\mathcal{O}}_{\mathbf{z}}^{13}$	1.85	-	•
$\tilde{\mathbf{O}}_{1}^{z}$	1.88	$O_1 - O_2 - O_3$	81.8°
$Me_{6}-\overset{\circ}{\mathrm{O}}_{11}$	2.06	$O_2^1 - O_3^2 - O_4^3$	130.6
O ₁₂	2.07	$O_3^2 - O_4^3 - O_5^4$	90.4
$\overset{\mathbf{O}}{\overset{12}{\overset{2}{\overset{12}}}}{\overset{12}}{\overset{12}{\overset{1}}}}{\overset{12}{\overset{12}}{\overset{12}{\overset{12}{\overset{12}$	1.75	$O_4 - O_5 - O_1$	113.5
O ⁸	1.95	$O_4 - O_5 - O_1$	123.8
О, Ма		$0_{5}^{1} - 0_{1}^{1} - 0_{2}^{1}$	
$Me_7 - O_6$	1.90	$O_{6}^{2} - O_{7}^{2} - O_{8}^{2}$	117.6
O ₁₀	2.02	$O_7 - O_8 - O_9$	85.2
O_3	1.86	$O_8 - O_9 - O_{10}$	132.9
0,	1.87	$O_9 - O_{10} - O_6$	90.6
Me_8-O_6	1.82	$O_{10} - O_{6} - O_{7}$	113.8
O_{7}	1.77	$O_{11}-O_{12}-O_{13}$	104.0
O'11	1.97	$O_{19} - O_{13} - O_{14}$	113.8
O ₁₅	2.01	$O_{13}-O_{14}-O_{15}$	101.5
Me_9 – O_5 × 2	1.84	0.4 - 0.5 - 0.5	111.2
$O_1 \times 2$	1.89	$O_{15}^{14} - O_{11}^{15} - O_{12}^{11}$	109.5

filled tunnels are apparently randomly distributed. This could easily be a metastable condition. In fact Roth 12 has suggested that ordering does occur at x=3 under the proper conditions.

The ideal composition for the structure in Fig. 1 is $0.47 Me^{v} O_{2.5} \cdot 0.53 W O_{3}$ (Nb₁₆W₁₈O₉₄ or Ta₁₆W₁₈O₉₄), but a small range of nonstoichiometry may exist due to disorder at the tunnels. That is, a few of the "unfilled tunnels" might be filled at compositions somewhat poorer in W than 0.53W, and a few of the "filled tunnels" might be vacant at compositions richer in W than 0.53W.

However, there is another mechanism whereby this structure could extend to compositions richer in WO₃. A powder diffraction pattern for ${\rm Ta_8W_{26}O_{94}}$ (prepared from ${\rm Ta_2O_5}$, WO₃, and W) was identical to that of ${\rm Ta_{16}W_{18}O_{94}}$ except for a considerable decrease in the d-spacings. This indicates that a certain amount of reduced W may replace Ta or Nb. It is well known that WO₃ tends to lose oxygen at high temperatures. Thus, it seems likely that compositions in the systems ${\rm Nb_2O_5-WO_3}$ and ${\rm Ta_2O_5-WO_3}$ may lose oxygen at high temperatures. This oxygen might well be reabsorbed on cooling if it is available.

Therefore, it is suggested that when the compositions 0.4Nb or 0.4Ta were heated to 1400° C under low oxygen pressure (\sim 1 atm.) some oxygen left the sample, and the formula $Me_{34}O_{94}$ was obtained. The color of the products indicated, however, that the W was fully oxidized. The necessary oxygen may have entered some of the empty tunnels. The accuracy of the data for the crystal of composition 0.4Nb is not sufficient to prove this suggestion. However, an observation which further indicates this mechanism is that a superstructure was not found at 0.4Nb or 0.4Ta at 1400°C under higher oxygen pressure (\sim 60 atm.) or in any case at 1300°C.

The contents of the unit cell at 0.4Nb according to this latter model would be $Me_{34}O_{95,2}$ leading to a density of 6.14. If instead some "filled tunnels" were vacant, *i.e.*, $Me_{33.3}O_{93.3}$, a density of 6.01 would be obtained. Unfortunately, the experimentally determined density of 5.95 is not sufficiently accurate

to distinguish between these two models.

DISCUSSION

There are actually a large number of compounds which have structures that can be viewed as two-dimensional networks of corner-sharing octahedra. In the third dimension these networks are stacked one directly upon the other and fused again by corner-sharing octahedra. These networks form 3, 4, 5, or 6 membered rings which become tunnels in three dimensions. $^{14-17}$ The tunnels may be empty as in $\mathrm{ReO_3}$, $\mathrm{MoW_{11}O_{36}}$, and $\mathrm{MoW_{14}O_{45}}$. They may also be (partially) filled with alkali or similar cations as in the various wolfram bronzes of the type $A_x\mathrm{WO_3}$. 16

The pentagonal tunnels may also be filled with metal and oxygen forming a string of pentagonal bipyramids which share apices. This is the case for $\mathrm{Nb_{16}W_{18}O_{94}}$ and $\mathrm{Ta_{16}W_{18}O_{94}}$ and suggests a family of structures with the general formula $(Me\mathrm{O})_{2}Me\mathrm{O}_{3}$. A previously known structure which would fall into this family is $\mathrm{Mo_{10}O_{28}}$ or $(\mathrm{MoO})\mathrm{Mo_{9}O_{27}}$. The structures of $\mathrm{W_{18}O_{49}}$ and $\mathrm{Mo_{17}O_{47}}$ are very closely related to those of this family, but they involve

some edge-sharing octahedra as well.

The next step would be a family of the type $A_x(MeO)_yMeO_3$. Recent structure determinations for $NaNb_6O_{15}F^{22}$ and $LiNb_6O_{15}F^{23}$ performed at this Institute have established that indeed such a family does exist. Furthermore, in many other systems: $BaO-Nb_2O_5$, ²⁴ PbO- Nb_2O_5 , ²⁵ $Na_2O-Nb_2O_5$, ²⁶ $K_2O-Nb_2O_5$, ²⁷ $Na_2O-Ta_2O_5$, ²⁷ and $K_2O-Ta_2O_5$, ²⁷ phases have been reported to give diffraction patterns very similar to that of TKWB. Most of these phases will fit the general formula $A_x(MeO)_yMeO_3$. For example, $BaO \cdot 2Nb_2O_5$ could be rewritten as $Ba_2(NbO)Nb_7O_{21}$ or x=2/7 and y=1/7.

Acknowledgements. I would like to express my sincere gratitude to the head of this Institute, Professor A. Magnéli, who suggested this work and made it possible. Thanks are also due to many others at this Institute. In particular, I wish to thank Drs. L. Kihlborg and S. Åsbrink, Mr. L. J. Norrby and Mrs. S. Nord. Further thanks are due to the Computer Division of the National Swedish Rationalization Agency for the use of the computers BESK and FACIT EDB. This investigation was made possible through financial support of the Swedish Natural Science Research Council and the Royal Swedish Academy of Science (the Kemiska prisgruppens särskilda fond). I would also like to acknowledge helpful discussions with Dr. C. Prewitt.

REFERENCES

- Sleight, A. and Magnéli, A. Acta Chem. Scand. 18 (1964) 2007.
 Magnéli, A. Arkiv Kemi 1 (1949) 213.
 Banks, E. and Noval, B. XVII Intern. Congr. Pure Appl. Chem. (1959), Abstract No. A907.
- 4. Kovba, L. and Trunov, V. Dokl. Akad. Nauk SSSR 146 (1962) 622.
- 5. Goldschmidt, M. Metallurgia 62 (1960) 241.

- Mohanty, G. and Fiegel, L. Acta Cryst. 17 (1964) 454.
 Fiegel, L., Mohanty, G. and Healy, J. J. Chem. Eng. Data 9 (1964) 365.
 Åsbrink, S. and Brändén, C. List of Crystallographic Computer Programs (1962), Accession Number 6023.
- 9. Thomas, L. and Umeda, K. J. Chem. Phys. 26 (1957) 293.
- 10. International Tables for X-ray Crystallography, Vol. III, Section 3.3.1.
- Cruickshank, D. Computer Science and Technology and Their Application, Eds. Pepinsky et al., Pergamon 1961.
 Roth, R. and Waring, J. 67th Annual Meeting of the Am. Cer. Soc. (1965), Abstract
- No. 83-B-65.
- 13. Hägg, G. and Magnéli, A. Arkiv Kemi, Mineral. Geol. 19 A (1944) N:o 2.
- Magnéli, A. Nova Acta Regiæ Soc. Scient. Upsaliensis, Ser. IV, 14 (1950) N:o 8.
 Magnéli, A. Acta Chem. Scand. 7 (1953) 315.
 Hägg, G. and Magnéli, A. Rev. Pure Appl. Chem. 4 (1954) 235.

- 17. Wadsley, A. D. Rev. Pure Appl. Chem. 5 (1955) 165.
- Graham, J. and Wadsley, A. D. Acta Cryst. 14 (1961) 379.
 Kihlborg, L. Arkiv Kemi 21 (1963) 427.

- Magnéli, A. Arkiv Kemi 1 (1949) 223.
 Kihlborg, L. Acta Chem. Scand. 17 (1963) 1485.
- 22. Andersson, S. Acta Chem. Scand. 19 (1965) 2285.
- 23. Lundberg, M. Acta Chem. Scand. 19 (1965) 2274.
- 24. Roth, R. and Waring, J. J. Res. Natl. Bur. Std. 65 A (1961) 337.
- 25. Francombe, M. Acta Cryst. 13 (1960) 131.
- Andersson, S. Acta Cryst. 16 (1963) A21.
 Whiston, C. and Smith, A. Acta Cryst. 19 (1965) 169.

Received January 18, 1966.